Publications


2022

Human Basal and Suprabasal Keratinocytes Are both Able to Generate and Maintain Dermo-Epidermal Skin Substitutes in Long-Term In Vivo Experiments.

L. Pontiggia, A.K. Ahuja, H.K. Yosef, D. Rütsche, E. Reichmann, U. Moehrlen, and T. Biedermann. Cells 11 (2022), 2156.

Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform.

L. Pontiggia, I.A.J. Van Hengel, A. Klar, D. Rütsche, M. Nanni, A. Scheidegger, S. Figi, E. Reichmann, U. Moehrlen, and T. Biedermann. J Tissue Eng 13 (2022).

The Role of CD200-CD200 Receptor in Human Blood and Lymphatic Endothelial Cells in the Regulation of Skin Tissue Inflammation.

D. Rütsche, K. Michalak-Micka, D. Zielinska, H. Moll, U. Moehrlen, T. Biedermann, and A.S. Klar. Cells 11 (2022).

Expression Profile of CD157 Reveals Functional Heterogeneity of Capillaries in Human Dermal Skin

K. Michalak-Micka, D. Rütsche, L. Johner, U. Moehrlen, T. Biedermann, and A.S. Klar. Biomedicines 10 (2022), 676.

Characterization of a melanocyte progenitor population in human interfollicular epidermis.

K. Michalak-Mićka, V.L. Büchler, N. Zapiórkowska-Blumer, T. Biedermann, and A.S. Klar. Cell Rep 38 (2022), 110419.

The influence of CD26+ and CD26− fibroblasts on the regeneration of human dermo-epidermal skin substitutes.

K. Michalak-Micka, A.S. Klar, A. Dasargyri, T. Biedermann, E. Reichmann, and U. Moehrlen. Scientific Reports 12 (2022), 1944.

Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A Comprehensive Review).

S. Tavakoli, M.A. Kisiel, T. Biedermann, and A.S. Klar. Biomedicines 10 (2022), 118.


2021

Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis.

J. Zimoch, D. Zielinska, K. Michalak-Micka, D. Rütsche, R. Böni, T. Biedermann, and A.S. Klar. Acta Biomater 134 (2021), 215-227.

Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes.

A. Wahlsten, D. Rütsche, M. Nanni, C. Giampietro, T. Biedermann, E. Reichmann, and E. Mazza. Biomaterials 273 (2021), 120779.

First time compassionate use of laboratory engineered autologous Zurich skin in a massively burned child.

N. Moiemen, C. Schiestl, F. Hartmann-Fritsch, K. Neuhaus, E. Reichmann, A. Löw, C. Stenger, S. Böttcher-Haberzeth, and M. Meuli. Burns Open 5 (2021), 113-117.

Expanding into the future: Combining a novel dermal template with distinct variants of autologous cultured skin substitutes in massive burns.

C. Schiestl, M. Meuli, M. Vojvodic, L. Pontiggia, D. Neuhaus, B. Brotschi, E. Reichmann, S. Böttcher-Haberzeth, and K. Neuhaus. Burns Open 5 (2021), 145-153.


2020

Bioengineering and in utero transplantation of fetal skin in the sheep model: A crucial step towards clinical application in human fetal spina bifida repair.

L. Mazzone, U. Moehrlen, N. Ochsenbein-Kolble, L. Pontiggia, T. Biedermann, E. Reichmann, and M. Meuli. J Tissue Eng Regen Med 14 (2020), 58-65.

Bioengineering of Fetal Skin: Differentiation of Amniotic Fluid Stem Cells into Keratinocytes.

M. Basler, L. Pontiggia, T. Biedermann, E. Reichmann, M. Meuli, and L. Mazzone. Fetal Diagn Ther 47 (2020), 198-204.

Detrusor bioengineering using a cell-enriched compressed collagen hydrogel.

J. Smolar, D. Nardo, E. Reichmann, R. Gobet, D. Eberli, and M. Horst. J Biomed Mater Res B Appl Biomater 108 (2020), 3045-3055.

Bio-engineering of fetal cartilage for in utero spina bifida repair.

A. Dasargyri, E. Reichmann, and U. Moehrlen. Pediatric surgery international 36 (2020), 25-31.


2019

Induction of angiogenic and inflammation-associated dermal biomarkers following acute UVB exposure on bio-engineered pigmented dermo-epidermal skin substitutes in vivo.

K. Micka-Michalak, T. Biedermann, E. Reichmann, M. Meuli, and A.S. Klar. Pediatric surgery international 35 (2019), 129-136.

A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children.

M. Meuli, F. Hartmann-Fritsch, M. Huging, D. Marino, M. Saglini, S. Hynes, K. Neuhaus, E. Manuel, E. Middelkoop, E. Reichmann, et al. Plast Reconstr Surg 144 (2019), 188-198.

A simplified fabrication technique for cellularized high-collagen dermal equivalents.

S. Fox, T. Biedermann, J. Polak, E. Reichmann, M.S. Daners, and M. Meboldt. Biomed Mater 14 (2019), 041001.


2018

UVB exposure of a humanized skin model reveals unexpected dynamic of keratinocyte proliferation and Wnt inhibitor balancing.

T. Michalczyk, T. Biedermann, S. Bottcher-Haberzeth, A.S. Klar, M. Meuli, and E. Reichmann. J Tissue Eng Regen Med 12 (2018), 505-515.

Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin substitutes in vivo.

A.S. Klar, K. Michalak-Micka, T. Biedermann, C. Simmen-Meuli, E. Reichmann, and M. Meuli. Pediatric surgery international 34 (2018), 129-135.

The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model.

A.S. Klar, K. Michalak, S. Bottcher-Haberzeth, E. Reichmann, M. Meuli, and T. Biedermann. Pediatric surgery international 34 (2018), 237-244.

Expression of inflammasome proteins and inflammasome activation occurs in human, but not in murine keratinocytes.

J. Sand, E. Haertel, T. Biedermann, E. Contassot, E. Reichmann, L.E. French, S. Werner, and H.D. Beer. Cell Death Dis 9 (2018), 24.

Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures.

J. Zimoch, J.S. Padial, A.S. Klar, Q. Vallmajo-Martin, M. Meuli, T. Biedermann, C.J. Wilson, A. Rowan, and E. Reichmann. Acta Biomater 70 (2018), 129-139.

Genome Editing of Human Primary Keratinocytes by CRISPR/Cas9 Reveals an Essential Role of the NLRP1 Inflammasome in UVB Sensing.

G. Fenini, S. Grossi, E. Contassot, T. Biedermann, E. Reichmann, L.E. French, and H.D. Beer. The Journal of investigative dermatology 138 (2018), 2644-2652.


2017

Factors affecting the mechanical behavior of collagen hydrogels for skin tissue engineering.

M. Pensalfini, A.E. Ehret, S. Stüdeli, D. Marino, A. Kaech, E. Reichmann, and E. Mazza. J Mech Behav Biomed Mater 69 (2017), 85-97.

Comparison of in vivo immune responses following transplantation of vascularized and non-vascularized human dermo-epidermal skin substitutes.

A.S. Klar, T. Biedermann, C. Simmen-Meuli, E. Reichmann, and M. Meuli. Pediatric surgery international 33 (2017), 377-382.

The Effect of Wound Dressings on a Bio-Engineered Human Dermo-Epidermal Skin Substitute in a Rat Model.

M. Hüging, T. Biedermann, M. Sobrio, S. Meyer, S. Böttcher-Haberzeth, E. Manuel, M. Horst, S. Hynes, E. Reichmann, C. Schiestl, et al. J Burn Care Res 38 (2017), 354-364.

Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.

A.S. Klar, T. Biedermann, K. Michalak, T. Michalczyk, C. Meuli-Simmen, A. Scherberich, M. Meuli, and E. Reichmann. The Journal of investigative dermatology 137 (2017), 2560-2569.

Evaluation of cultured human dermal- and dermo-epidermal substitutes focusing on extracellular matrix components: Comparison of protein and RNA analysis.

C. Oostendorp, S. Meyer, M. Sobrio, J. van Arendonk, E. Reichmann, W.F. Daamen, and T.H. van Kuppevelt. Burns 43 (2017), 520-530.

Low neurotrophin receptor CD271 regulates phenotype switching in melanoma.

G. Restivo, J. Diener, P.F. Cheng, G. Kiowski, M. Bonalli, T. Biedermann, E. Reichmann, M.P. Levesque, R. Dummer, and L. Sommer. Nat Commun 8 (2017), 1988.


2016

Successful grafting of tissue-engineered fetal skin.

L. Mazzone, M. Pratsinis, L. Pontiggia, E. Reichmann, and M. Meuli. Pediatric surgery international 32 (2016), 1177-1182.

Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute.

A.S. Klar, S. Guven, J. Zimoch, N.A. Zapiorkowska, T. Biedermann, S. Bottcher-Haberzeth, C. Meuli-Simmen, I. Martin, A. Scherberich, E. Reichmann, et al. Pediatric surgery international 32 (2016), 17-27.

Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention.

F. Hartmann-Fritsch, T. Biedermann, E. Braziulis, J. Luginbuhl, L. Pontiggia, S. Bottcher-Haberzeth, T.H. van Kuppevelt, K.A. Faraj, C. Schiestl, M. Meuli, et al. J Tissue Eng Regen Med (2012).

Myelinated and unmyelinated nerve fibers reinnervate tissue-engineered dermo-epidermal human skin analogs in an in vivo model.

T. Biedermann, A.S. Klar, S. Bottcher-Haberzeth, E. Reichmann, and M. Meuli. Pediatric surgery international 32 (2016), 1183-1191.

Visualisation of newly synthesised collagen in vitro and in vivo.

C. Oostendorp, P.J. Uijtdewilligen, E.M. Versteeg, T.G. Hafmans, E.H. van den Bogaard, P.K. de Jonge, A. Pirayesh, J.W. Von den Hoff, E. Reichmann, W.F. Daamen, et al. Sci Rep 6 (2016), 18780.

Functional Analysis of Vascularized Collagen/Fibrin Templates by MRI In Vivo.

W. Sun, Y. Sun, A.S. Klar, P. Geutjes, E. Reichmann, A. Heerschap, and E. Oosterwijk. Tissue Eng Part C Methods 22 (2016), 747-755.


2015

Long-term expression pattern of melanocyte markers in light- and dark-pigmented dermo-epidermal cultured human skin substitutes.

T. Biedermann, A.S. Klar, S. Bottcher-Haberzeth, T. Michalczyk, C. Schiestl, E. Reichmann, and M. Meuli. Pediatric surgery international 31 (2015b), 69-76.

Characterization of pigmented dermo-epidermal skin substitutes in a long-term in vivo assay.

S. Bottcher-Haberzeth, T. Biedermann, A.S. Klar, D.S. Widmer, K. Neuhaus, C. Schiestl, M. Meuli, and E. Reichmann. Experimental dermatology 24 (2015), 16-21.

The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts.

T. Biedermann, S. Bottcher-Haberzeth, A.S. Klar, D.S. Widmer, L. Pontiggia, A.D. Weber, D.M. Weber, C. Schiestl, M. Meuli, and E. Reichmann. Tissue engineering 21 (2015), 960-969.


2014

De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells.

L. Pontiggia, T. Biedermann, S. Bottcher-Haberzeth, C. Oliveira, E. Braziulis, A.S. Klar, C. Meuli-Simmen, M. Meuli, and E. Reichmann. The Journal of investigative dermatology 134 (2014), 1735-1742.

Experimental tissue engineering of fetal skin.

L. Mazzone, L. Pontiggia, E. Reichmann, N. Ochsenbein-Kolble, U. Moehrlen, and M. Meuli. Pediatric surgery international 30 (2014), 1241-1247.

Skingineering

D. Marino, E. Reichmann, and M. Meuli. Eur J Pediatr Surg 24 (2014), 205-213.

Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries.

D. Marino, J. Luginbuhl, S. Scola, M. Meuli, and E. Reichmann. Sci Transl Med 6 (2014), 221ra214.

Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells.

A.S. Klar, S. Guven, T. Biedermann, J. Luginbuhl, S. Bottcher-Haberzeth, C. Meuli-Simmen, M. Meuli, I. Martin, A. Scherberich, and E. Reichmann. Biomaterials 35 (2014), 5065-5078.

Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation.

A.S. Klar, S. Bottcher-Haberzeth, T. Biedermann, C. Schiestl, E. Reichmann, and M. Meuli. Pediatric surgery international 30 (2014), 223-231.

Differential expression of granulocyte, macrophage, and hypoxia markers during early and late wound healing stages following transplantation of tissue-engineered skin substitutes of human origin.

A.S. Klar, S. Bottcher-Haberzeth, T. Biedermann, K. Michalak, M. Kisiel, E. Reichmann, and M. Meuli. Pediatric surgery international 30 (2014), 1257-1264.

Tissue engineering of skin: human tonsil-derived mesenchymal cells can function as dermal fibroblasts.

S. Bottcher-Haberzeth, T. Biedermann, A.S. Klar, L. Pontiggia, J. Rac, D. Nadal, C. Schiestl, E. Reichmann, and M. Meuli. Pediatric surgery international 30 (2014), 213-222.

Tissue-engineered dermo-epidermal skin analogs exhibit de novo formation of a near natural neurovascular link 10 weeks after transplantation.

T. Biedermann, A.S. Klar, S. Bottcher-Haberzeth, C. Schiestl, E. Reichmann, and M. Meuli. Pediatric surgery international 30 (2014), 165-172.


2013

Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes.

L. Pontiggia, A. Klar, S. Bottcher-Haberzeth, T. Biedermann, M. Meuli, and E. Reichmann. Pediatric surgery international 29 (2013), 249-256.

Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog.

F. Hartmann-Fritsch, N. Hosper, J. Luginbuhl, T. Biedermann, E. Reichmann, and M. Meuli. Pediatric surgery international 29 (2013), 61-69.

A new model for preclinical testing of dermal substitutes for human skin reconstruction.

F. Hartmann-Fritsch, T. Biedermann, E. Braziulis, M. Meuli, and E. Reichmann. Pediatric surgery international 29 (2013), 479-488.

"Trooping the color": restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs.

S. Bottcher-Haberzeth, A.S. Klar, T. Biedermann, C. Schiestl, C. Meuli-Simmen, E. Reichmann, and M. Meuli. Pediatric surgery international 29 (2013), 239-247.

Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

S. Bottcher-Haberzeth, T. Biedermann, L. Pontiggia, E. Braziulis, C. Schiestl, B. Hendriks, O.M. Eichhoff, D.S. Widmer, C. Meuli-Simmen, M. Meuli, et al. The Journal of investigative dermatology 133 (2013), 316-324.

Rebuild, restore, reinnervate: do human tissue engineered dermo-epidermal skin analogs attract host nerve fibers for innervation?

T. Biedermann, S. Bottcher-Haberzeth, A.S. Klar, L. Pontiggia, C. Schiestl, C. Meuli-Simmen, E. Reichmann, and M. Meuli. Pediatric surgery international 29 (2013), 71-78.

Tissue engineering of skin for wound coverage.

T. Biedermann, S. Boettcher-Haberzeth, and E. Reichmann. Eur J Pediatr Surg 23 (2013), 375-382.

The angiogenic response to PLL-g-PEG-mediated HIF-1α plasmid DNA delivery in healthy and diabetic rats.

M. Thiersch, M. Rimann, V. Panagiotopoulou, E. Öztürk, T. Biedermann, M. Textor, T.C. Lühmann, and H. Hall. Biomaterials 34 (2013), 4173-4182.


2012

Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention.

F. Hartmann-Fritsch, T. Biedermann, E. Braziulis, J. Luginbuhl, L. Pontiggia, S. Bottcher-Haberzeth, T.H. van Kuppevelt, K.A. Faraj, C. Schiestl, M. Meuli, et al. J Tissue Eng Regen Med 10 (2016), 81-91 (Epub 2012 Dec 10).

Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes.

E. Braziulis, M. Diezi, T. Biedermann, L. Pontiggia, M. Schmucki, F. Hartmann-Fritsch, J. Luginbuhl, C. Schiestl, M. Meuli, and E. Reichmann. Tissue Eng Part C Methods 18 (2012), 464-474.

Engineering melanoma progression in a humanized environment in vivo.

G. Kiowski, T. Biedermann, D.S. Widmer, G. Civenni, C. Burger, R. Dummer, L. Sommer, and E. Reichmann. The Journal of investigative dermatology 132 (2012), 144-153.

Glucose sensing in human epidermis using mid-infrared photoacoustic detection.

J. Kottmann, J.M. Rey, J. Luginbühl, E. Reichmann, and M.W. Sigrist. Biomed Opt Express 3 (2012), 667-680.

Matriderm(R) 1 mm versus Integra(R) Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats.

S. Bottcher-Haberzeth, T. Biedermann, C. Schiestl, F. Hartmann-Fritsch, J. Schneider, E. Reichmann, and M. Meuli. Pediatric surgery international 28 (2012), 171-177.


2011

Osmotic expanders in children: no filling--no control--no problem?

S. Böttcher-Haberzeth, S. Kapoor, M. Meuli, K. Neuhaus, T. Biedermann, E. Reichmann, and C. Schiestl. Eur J Pediatr Surg 21 (2011), 163-167.

Novel treatment for massive lower extremity avulsion injuries in children: slow, but effective with good cosmesis.

C. Schiestl, K. Neuhaus, T. Biedermann, S. Böttcher-Haberzeth, E. Reichmann, and M. Meuli. Eur J Pediatr Surg 21 (2011), 106-110.

Determining the origin of cells in tissue engineered skin substitutes: a pilot study employing in situ hybridization.

A.D. Weber, L. Pontiggia, T. Biedermann, C. Schiestl, M. Meuli, and E. Reichmann. Pediatric surgery international 27 (2011), 255-261.

Skingineering II: transplantation of large-scale laboratory-grown skin analogues in a new pig model.

C. Schiestl, T. Biedermann, E. Braziulis, F. Hartmann-Fritsch, S. Bottcher-Haberzeth, M. Arras, N. Cesarovic, F. Nicolls, C. Linti, E. Reichmann, et al. Pediatric surgery international 27 (2011), 249-254.

Skingineering I: engineering porcine dermo-epidermal skin analogues for autologous transplantation in a large animal model.

E. Braziulis, T. Biedermann, F. Hartmann-Fritsch, C. Schiestl, L. Pontiggia, S. Bottcher-Haberzeth, E. Reichmann, and M. Meuli. Pediatric surgery international 27 (2011), 241-247.


2010

Transglutaminases, involucrin, and loricrin as markers of epidermal differentiation in skin substitutes derived from human sweat gland cells.

S. Tharakan, L. Pontiggia, T. Biedermann, S. Bottcher-Haberzeth, C. Schiestl, E. Reichmann, and M. Meuli. Pediatric surgery international 26 (2010), 71-77.

Formation of human capillaries in vitro: the engineering of prevascularized matrices.

I. Montano, C. Schiestl, J. Schneider, L. Pontiggia, J. Luginbuhl, T. Biedermann, S. Bottcher-Haberzeth, E. Braziulis, M. Meuli, and E. Reichmann. Tissue engineering 16 (2010), 269-282.

Tissue engineering of skin.

S. Bottcher-Haberzeth, T. Biedermann, and E. Reichmann. Burns 36 (2010), 450-460.

Human Eccrine Sweat Gland Cells Can Reconstitute a Stratified Epidermis.

T. Biedermann, L. Pontiggia, S. Bottcher-Haberzeth, S. Tharakan, E. Braziulis, C. Schiestl, M. Meuli, and E. Reichmann. The Journal of investigative dermatology 130 (2010), 1996-2009.


2009

Matriderm versus Integra: a comparative experimental study.

J. Schneider, T. Biedermann, D. Widmer, I. Montano, M. Meuli, E. Reichmann, and C. Schiestl. Burns 35 (2009), 51-57.

Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation.

L. Pontiggia, T. Biedermann, M. Meuli, D. Widmer, S. Bottcher-Haberzeth, C. Schiestl, J. Schneider, E. Braziulis, I. Montano, C. Meuli-Simmen, et al. The Journal of investigative dermatology 129 (2009), 480-490.


2002

Wnt signaling: a complex issue.

B. Hendriks, and E. Reichmann. Biol Res 35 (2002), 277-286.